Exploring Streams: Stream Monitoring Curriculum Guide for Middle & High School Teachers & Students

HANDS-ON LEARNING ABOUT STREAMS WITHIN & OUTSIDE THE CLASSROOM
Acknowledgements

DEVELOPED BY:
Kris Stepenuck, University of Wisconsin-Extension and Wisconsin Department of Natural Resources
Katie Murphy, Middle School Science Teacher

CONTRIBUTORS AND/OR EDITORS: (Some activities previously developed for WAV)
Kevin Amundson, Poynette High School
Scott Arnold, Department of Soil Science at University of Wisconsin-Madison
Judy Aspling, Friends of the St. Croix Headwaters
Amalia Baldwin, Wisconsin Department of Natural Resources
Rebecca Betsul, Eau Claire Area School District
Laura Bruhn, Michigan State University Extension
Chris Clayton, River Alliance of Wisconsin
Kevin Fermanich, Department of Soil Science at University of Wisconsin-Madison
Ann Gaffney, Londonderry (NH) Middle School
Elizabeth Goers, University of Wisconsin-Madison
Ed Grunden
Paul Hlina
Allison Hughes, Georgia Adopt-A-Stream
Pete Jopke, Dane County Land Conservation Department
Susan Klubert, Londonderry (NH) Middle School
Peter Kling, Department of Soil Science at University of Wisconsin-Madison
Ann Kroncke, Platteville Public School District
Carolyn Lipke, Wisconsin Department of Natural Resources
Tara Muenz, Georgia Adopt-A-Stream
Dave Niemi, Mt. Calvary-Grace Lutheran School
Mike Pelech, Department of Soil Science at University of Wisconsin-Madison
Dr. Bret Shaw, University of Wisconsin-Madison
Heather Smith, University of Wisconsin-Extension
Ed Sommers, Poynette High School
Theresa Stabo, Wisconsin Department of Natural Resources
Christophe Stoelinga
Jeff Strobel, University of Wisconsin-Extension
Ron Struss
Allison Werner, River Alliance of Wisconsin
Lois Wolfson, Michigan State University Extension
Catherine Woodward, University of Wisconsin-Madison Center for Biology Education
Andy Yencha, University of Wisconsin-Extension
Rob Zemenchik, Department of Soil Science at University of Wisconsin-Madison

Thanks to the many teachers and volunteer monitors who provided valuable input for this curriculum. We also wish to acknowledge the many volunteers who have given countless hours monitoring, training others, and working effortlessly to protect and improve their local streams. It was through their encouragement that the Water Action Volunteers (WAV) stream monitoring methods were configured for use in schools.

For more information about volunteer stream monitoring opportunities in Wisconsin, and for printable pdfs of this curriculum and addendum, visit: http://watermonitoring.uwex.edu/wav

WI DNR PUB-WT-992 Exploring Streams: Stream Monitoring Curriculum Guide for Middle and High School Teachers and Students: Hands-on Learning about Streams Within and Outside the Classroom 2013

Wisconsin Department of Natural Resources, Box 7921, Madison, WI 53707-7921

Printing funded in part by The Department of Natural Resources’ Citizen-based Monitoring Partnership Program.

A publication of the University of Wisconsin-Extension, in cooperation with the Wisconsin Department of Natural Resources ©2013 by the Board of Regents of the University of Wisconsin System. University of Wisconsin-Extension is an EEO/Affirmative Action employer and provides equal opportunities in employment and programming, including Title IX requirements.

The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240. This publication is available in alternative format (large print, Braille, audio tape. etc.) upon request. Please call (608) 267-7694 for more information.

Graphic Design by Jeffrey J. Strobel and Katie Gaab, UW-Extension Environmental Resources Center
Exploring Streams: Stream Monitoring Curriculum Guide

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>VI</td>
</tr>
<tr>
<td>Section 1: Pre-Field Trip Activities (Learning the Monitoring Procedures)</td>
<td>1-1</td>
<td></td>
</tr>
<tr>
<td>Activity 1: Optional Pre-test</td>
<td>1-2</td>
<td></td>
</tr>
<tr>
<td>Activity 2: The Human Watershed</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>Activity 3: Watershed In a Box</td>
<td>1-12</td>
<td></td>
</tr>
<tr>
<td>Activity 4: Stream Savers</td>
<td>1-15</td>
<td></td>
</tr>
<tr>
<td>Activity 5: Transparency</td>
<td>1-27</td>
<td></td>
</tr>
<tr>
<td>Activity 6: Temperature</td>
<td>1-32</td>
<td></td>
</tr>
<tr>
<td>Activity 7: Dissolved Oxygen</td>
<td>1-36</td>
<td></td>
</tr>
<tr>
<td>Activity 8: Stream Flow</td>
<td>1-41</td>
<td></td>
</tr>
<tr>
<td>Activity 9: Habitat Assessment</td>
<td>1-44</td>
<td></td>
</tr>
<tr>
<td>Activity 10: Biotic Index</td>
<td>1-51</td>
<td></td>
</tr>
<tr>
<td>Pre-Field Trip Optional Activity Descriptions</td>
<td>1-55</td>
<td></td>
</tr>
<tr>
<td>E. coli Bacteria Monitoring</td>
<td>1-55</td>
<td></td>
</tr>
<tr>
<td>Erosion in a Bottle</td>
<td>1-63</td>
<td></td>
</tr>
<tr>
<td>Urban Runoff Model</td>
<td>1-68</td>
<td></td>
</tr>
<tr>
<td>Transparency Tube Case Construction</td>
<td>1-72</td>
<td></td>
</tr>
<tr>
<td>Stream Ecosystem – What Makes a Stream Healthy?</td>
<td>1-73</td>
<td></td>
</tr>
<tr>
<td>Parts Per Million Lab</td>
<td>1-78</td>
<td></td>
</tr>
<tr>
<td>Making and Using Dichotomous Keys</td>
<td>1-82</td>
<td></td>
</tr>
<tr>
<td>Researching Macroinvertebrates</td>
<td>1-84</td>
<td></td>
</tr>
<tr>
<td>Stream Walk Survey</td>
<td>1-88</td>
<td></td>
</tr>
<tr>
<td>What is a Watershed Video</td>
<td>1-94</td>
<td></td>
</tr>
<tr>
<td>Optional Activities From Other Sources</td>
<td>1-96</td>
<td></td>
</tr>
</tbody>
</table>

Section 2: Field Trip .. 2-1

<table>
<thead>
<tr>
<th>Station</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station 1: Finding Your Watershed and Transparency</td>
<td>2-5</td>
<td></td>
</tr>
<tr>
<td>Station 2: Temperature / Water Samples / Magic Spots</td>
<td>2-10</td>
<td></td>
</tr>
<tr>
<td>Station 3: Dissolved Oxygen</td>
<td>2-15</td>
<td></td>
</tr>
<tr>
<td>Station 4: Stream Flow</td>
<td>2-17</td>
<td></td>
</tr>
<tr>
<td>Station 5: Habitat Assessment</td>
<td>2-19</td>
<td></td>
</tr>
<tr>
<td>Station 6: Macroinvertebrate Collection</td>
<td>2-21</td>
<td></td>
</tr>
<tr>
<td>Station 7: Macroinvertebrate Identification</td>
<td>2-24</td>
<td></td>
</tr>
<tr>
<td>Optional Activities From Other Sources</td>
<td>2-25</td>
<td></td>
</tr>
</tbody>
</table>
Section 3: Post Field Trip (Calculation of Results and Data Interpretation) .. 3-1

Activity 1: Calculating Transparency Statistics ... 3-3
Activity 2: Calculating Water Temperature Statistics ... 3-3
Activity 3: Calculating Dissolved Oxygen in Percent Saturation and Statistics 3-4
Activity 4: Calculating Stream Flow and Statistics ... 3-4
Activity 5: Calculating Habitat Assessment Statistics ... 3-5
Activity 6: Calculating a Biotic Index Score and Statistics ... 3-6

Post Field-Trip Optional Activities .. 3-7

E. coli Sample Incubation, Colony Counting and Calculating E. coli 3-7
Statistics ... 3-7
Assessment ... 3-8
Computer Graphing and Presentations ... 3-8
Community Outreach: Letter to the Editor ... 3-15
Community Outreach: Video/PowerPoint Presentation of Project 3-19
Community Issue-based Research and Role Play ... 3-20
Scientific Reports ... 3-23
Data Entry to the Water Action Volunteers Online Database ... 3-25
Thank You Notes .. 3-26
Storm Drain Stenciling .. 3-27
River Cleanup .. 3-30
Optional Activities From Other Sources .. 3-33

Section 4: Student Workbook .. 4-1

Section 5: Resources .. 5-1
Water Action Volunteers' Education Materials ... 5-2
Related Wisconsin Curricula .. 5-2
Other Educational Resources ... 5-3
Wisconsin Model Academic Standards .. 5-4
I. Agricultural Education ... 5-4
II. English ... 5-4
III. Environmental Education .. 5-5
IV. Information and Technology Literacy ... 5-6
V. Mathematics: Measurement ... 5-10
VI. Mathematics: Statistics and Probability .. 5-11
VII. Science A, Science Connections ... 5-11
VIII. Science B, Nature of Science ... 5-12
IX. Science C, Science Inquiry ... 5-12
X. Science F, Life and Environmental Science ... 5-13
XI. Science H, Science in Personal and Social Perspectives 5-14
XII. Social Studies .. 5-14
Wisconsin’s Major Watersheds and Watershed Education Resource Center Contacts ... 5-15
Connecting with Volunteers in Your Community to Assist with your Field Trip .. 5-16

Section 6: Field Trip Materials .. 6-1
A. Equipment Bin Materials Lists ... 6-2
B: Field Trip Procedures ... 6-4
 Station 1: Topographical Maps (Finding Your Watershed) and Transparency ... 6-5
 Station 2: Temperature / Water Sample / Magic Spots 6-7
 Station 3: Dissolved Oxygen .. 6-9
 Station 4: Stream Flow .. 6-10
 Station 5: Habitat Assessment ... 6-12
 Station 6: Macroinvertebrate Collection .. 6-13
 Station 7: Macroinvertebrate Identification .. 6-16
C: Student Field Data Sheets .. 6-17
D: Station Leader Data Sheets .. 6-23
Streams are dynamic places to study! Middle and high school students will learn about at least six aspects of stream health in this Water Action Volunteers (WAV) stream monitoring curriculum. The following activity guide is divided into six sections:

Section 1: Pre-Field Trip Activities
Section 2: Field Trip Activities
Section 3: Post Field Trip Activities
Section 4: Student Workbook
Section 5: Resources
Section 6: Field Trip Materials

The first three sections contain teacher guidelines and activity descriptions designed to allow students to learn why water monitoring is important and methods to assess water quality. Optional extension activities are listed within each section, offering teachers the opportunity to address a topic in more depth if time and interest allow. Answer keys are provided for teacher reference where relevant. The fourth section, a student workbook, is designed to be photocopied (or printed from the WAV website) and distributed to students. Each student will work through the activities to learn how to monitor stream health as guided by their teacher and field trip facilitators. The fifth section contains resources that are referenced in or that augment the curriculum. The final section contains information and materials for use during the field trip.

We expect that carrying out the basic activities in these sections will take approximately three to four weeks of class time (depending on scheduling and depth of coverage), including one half-day to a full-day field trip. Resources are provided to extend the unit beyond this time period for teachers who are interested in doing so. Each activity is aligned with Wisconsin Model Academic Standards for grades 8 and 12. As this curriculum was developed during the shift to Common Core State Standards, an addendum has been developed to aid teachers in understanding how these new standards align with each activity. The addendum will be updated as new core curriculum standards are approved. (Visit: http://watermonitoring.uwex.edu/wav for printable pdfs of this curriculum and addendum.) The basic program is set up as follows:
Week 1 (3-5 days in classroom): To help students understand why we care about studying water, they will first be introduced to the concept of a watershed and will learn about how our uses of the land can affect water quality. Then to prepare to monitor a local stream, they will watch short (2-15 minute) videos about each monitoring method, read information about each to supplement the video training, and then practice the tests (when possible) in the classroom. The students will answer discussion questions for each parameter and will hypothesize what results they will find for each parameter when they monitor during the field trip. Students may have to answer some questions as homework.

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water monitoring pre-test and The Human Watershed</td>
<td>Why We Care: What is a Watershed video</td>
<td>Why We Care: Watershed in a Box and Are You a Stream Saver?</td>
<td>How does transparency show the health of a stream? Video, discussion, method and data recording practice</td>
<td>How do temperature and dissolved oxygen show the health of a stream? Videos, discussion, method and data recording practice</td>
</tr>
<tr>
<td></td>
<td>How does stream flow show the health of a stream? Video and discussion</td>
<td>How does habitat show the health of a stream? Video, discussion, method and data recording practice</td>
<td>How does biotic index show the health of a stream? Video, discussion, method and data recording practice</td>
<td>Field trip</td>
<td>(Field trip rain date)</td>
</tr>
<tr>
<td></td>
<td>Calculate mean, median, mode and range for data</td>
<td>Discuss real world applications of water monitoring results. Assign reports.</td>
<td></td>
<td></td>
<td>Water monitoring post-test</td>
</tr>
</tbody>
</table>

| Week 4 | Report presentations | Report presentations | | | |
Week 2 (3 days in classroom, 1 day in field): Students will complete watching videos and practicing how to monitor the parameters. Then students will take a one-half to a full day field trip to a local stream site. Field trip length depends on distance to the stream site from the school and teacher preference. Students will monitor at least six parameters and will complete a watershed activity.

Weeks 3 and 4 (2-4 days each in classroom): Students will make calculations to determine results of their monitoring efforts during the field trip. They will analyze their results and make conclusions about their findings. Optional extension activities include having students outreach to their local community with results of their monitoring (e.g., by writing a letter to the editor or visiting a town board), researching the meaning of their findings and making conclusions and recommendations for community action, preparing a report, and learning more about the science of streams by conducting various experiments.